

14th China International Forum on Solid State Lighting

Precise strain-control and excellent emission uniformity of 200 mm GaN-on-Si LED epiwafer for micro LED applications

ALLOS Semiconductors GmbH

B. Slischka, A. Loesing, A. Nishikawa

No need to take photos – just email me and get a copy of this presentation BS@allos-semiconductors.com

1

A. Strain-control related requirements for micro LED epiwafers

- B. Strain-management by AlGaN interlayer
- c. Demonstrated results on 200 mm GaN-on-Si for micro LED epiwafers

ALLOS is a fabless IP licensing and technology company Based on 18 years GaN-on-Si track record at University Magdeburg, AZZURRO and ALLOS

ALLOS enables customers to master GaN-on-Si epiwafer technology

We are continuously improving our technology to stay ahead Establish 150 and 200 mm GaN-on-Si technology for all applications on customers' reactors

ALLOS' leading GaN-on-Si epiwafer technology is available for all four major market segments

Why do people look at micro LED displays?

Display Technology	LCD	OLED	Micro LED
Mechanism	Backlight / LED	Self-emissive	Self-emissive
Contrast Ratio	5,000:1	∞	œ
Lifespan	Medium	Medium	Long
Response Time	ms	μs	ns
Operating Temperature	-40 to 100°C	-30 to 85°C	-100 to 120°C
Power Consumption	High	Medium	Low
View Angle	Low	Medium	High
Pixel per inch	Up to 800 ppi	500 ppi	>2000 ppi
Cost	Low	Medium	High

Why do micro LED displays require a quantum leap in manufacturing?

- A simple 4K UHD display has 3,840 x 2,160 pixels (= 8,294,400)
- Using RGB will require more than 24,800,000 micro LED chips

Relevant yield*	equals amount of chips failing
90.00000 %	2,488,320.00
95.00000 %	1,244,160.00
99.00000 %	248,832.00
99.90000 %	24,883.20
99.99000 %	2,488.32
99.99900 %	248.83
99.99990 %	24.88
99.99999 %	2.49

Even a **Six Sigma** = 99.99 % defectfree process will require 2,488 chips to be repaired on a 4K UHD display

- Today consumers do not accept pixel errors
- Even with *extremely high yield* a repair strategy is unavoidable

* Combined yield of all processes including on-wafer yield, LED chip making yield, transfer yield, etc.

The relevant yield results from all process steps

Good area	x	Good LEDs on wafer	x	Good LEDs after bonding and substrate removal	x	Transfer yield

Good LEDs on display * LEDs transferred to display

* before repair

Wafer properties determine cost and yield in later manufacturing steps

Large Wafer diameter	Sharp decrease of cost per chip	Sharp decrease of cost per chip	Better wafer area utilization for given stamp size
Flat wafers	Needed to process large wafers	Higher bonding yield	
No cracks, no residual strain	Very low breakage	Higher bonding yield	
igh crystal quality	High emission effi- ciency and reliability		
xcellent emission uniformity	On-wafer yield is approaching "1 bin"		Mass transfer of large areas possible with minimal repair need

Η

Outline

- A. Strain-control related requirements for micro LED epiwafers
- B. Strain-management by AlGaN interlayer
- c. Demonstrated results on 200 mm GaN-on-Si for micro LED epiwafers

ALLOS' strain-management is based on nucleation layer and interlayers

The decisive role of strain-engineering

ALLOS' strain-control technology allows to target different bow levels

Curvature profile during n-GaN growth with different interlayer growth conditions

Outline

- A. Strain-control related requirements for micro LED epiwafers
- B. Strain-management by AlGaN interlayer
- c. Demonstrated results on 200 mm GaN-on-Si for micro LED epiwafers

ALLOS' strain-management is successfully applied to 200 mm GaN-on-Si micro LED epiwafer

Epiwafer warp (bow) after growth is well-controlled below 30 μm by interlayer growth condition

Edge cracks are eliminated even at epiwafer notch with mature strain-engineering

Immature strain-control

Copyright ALLOS Semiconductors 2017 – Not public - Personal copy

Good strain-control

Strain-management allows growth of thick epi layers with excellent uniformity

ALLOS Semiconductors

Copyright ALLOS Semiconductors 2017 - Not public - Personal copy ssl

SSL China 2017 Beijing | 18

High crystal quality based on thick epi layers and ALLOS' unique buffer growth technology

FWHM of GaN-on-Si LED epiwafer

	Point from center of wafer	FWHM (arcsec)
	0 mm	407
XRD (002)	45 mm	409
(002)	90 mm	388
	0 mm	506
XRD (102)	45 mm	545
(102)	90 mm	494

The current XRD homogeneity level is considered to be sufficient. However, it can be optimized further if needed.

Surface morphology of n-GaN buffer

	Image Rq	0.216 nm
-	Image Ra	0.169 nm
-	Image Rmax	2.99 nm

Strain-engineering can ensure optimal conditions for MQW growth <u>and</u> flat wafer after cooling down

Curvature profile for GaN-on-Si LED growth

Excellent emission uniformity < 1 nm is achieved on 200 mm GaN-on-Si micro LED epiwafer

Conclusion

- Precise strain-control for GaN-on-Si epiwafers is achieved
- This allows to achieve epiwafer values which are crucial for micro LEDs' performance, quality and yield:
 - 200 mm diameter GaN-on-Si LED epiwafer
 - Flat wafer
 - Avoid cracks, even at the edge and no residual strain
 - Achieve high crystal quality for 5.8 μm thick epi stack
 - Emission uniformity < 1 nm is achieved
- At the same time the applied strain-engineering does not have any negative side-effect on other epiwafer properties

Thank you very much for your attention!

I am happy to take any questions now or after the session and please contact me for any enquiries you may have or for your copy of the presentation:

BS@allos-semiconductors.com

Don't miss our joint press release with Veeco Inc. from 01.11.2017 on the same topic.

